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A simplified model has been set up for calculation of the molar Gibbs energy of mixing ∆mixGm(s)
in crystals based on the assumption of a complete liquid–solid thermodynamic equilibrium in the
water–salt systems. The procedure allows the ∆mixGm(s) values to be calculated from the experimen-
tal solubility data for the saturated binary and ternary solutions. The ∆mixGm(s) values and the excess
Gibbs energy of mixing ∆mixGm

E(s) were calculated for six alkali–halide systems (KCl–RbCl–H2O,
KBr–RbBr–H2O, KI–RbI–H2O, NH4Cl–NH4Br–H2O, RbCl–RbBr–H2O and CsCl–CsBr–H2O). The
results obtained were compared with experimental data taken from the literature and values calcu-
lated based on various theoretical approaches.
Key words: Mixing energy; Crystals; Binary ternary solutions.

Elucidation of the thermodynamics of mixed crystal formation is of both theoretical and
practical importance. The determination of the most significant characteristics of this
process, i.e. the molar Gibbs energy of mixing ∆mixGm(s), the excess Gibbs energy of
mixing ∆mixGm

E(s), the excess enthalpy of mixing ∆mixHm
E(s), and the excess entropy of

mixing ∆mixSm
E(s), is also of special interest for a further development of the thermody-

namics of solid solutions.
The low values of these characteristics and the complexity of the experimental

methods, such as the isopiestic method and direct calorimetric measurements on special
mixed crystal samples, are sources of considerable differences, calling for the develop-
ment of new theoretical models. A significant advance in this respect has been achieved
after the development of the Pitzer ion-interaction model1,2, which permits calculation
of activity coefficients in unsaturated and saturated solutions of electrolytes with an
accuracy of 2 to 6 per cent3.

As early as the fifties, McCoy and Wallace4 calculated the ∆mixGm(s) values for
K(Cl, Br) mixed crystals based on the equations:

∆mixGm(s)/RT = x1 ln a1(s) + x2 ln a2(s) =
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= x1[ln a1(l) − ln a1(l0)] + x2[ln a2(l) − ln a2(l0)]  , (1)

where the indices s, l and l0 refer to mixed crystals and the saturated ternary and binary
solutions, respectively.

Harvie, Møller and Weare5 and Filippov and Rumyantsev6 applied Eqs (1) along with
the Pitzer model to the determination of the thermodynamic characteristics of the pro-
cess of mixing.

In our previous studies7–9 we proved the applicability of the equations to the determi-
nation of ∆mixGm(s) and ∆mixGm

E(s) for a series of systems which involved mixed crys-
tals of both anhydrous salts and crystalline hydrates.

Königsberger10 determined the excess Gibbs energy of the solid phase based on Eq. (2),
deduced from the subregular mixing model,

∆mixGm
E(s) = x(1 − x)[G1

E(s) + G2
E(s)(1 − 2x)]  , (2)

where G1
E(s) and G2

E(s) are thermodynamic excess parameters. The parameters are ob-
tained from fits to Lippmann diagrams11, in which the total solubility constant ΣK is
plotted vs mole fractions x of the solid phase and activity fractions xact of the aqueous
phase at thermodynamic equilibrium. Königsberger and Gamsjäger12 determined the
thermodynamic properties based on the thermodynamic equilibrium conditions for a
system with a variable composition of the solid phase (equality of chemical potentials
in the solid and liquid phases) and the stoichiometric saturation condition dx = 0. In
response to that paper, Glynn and Reardon13 demonstrated that the regular solid–liquid
model describes the properties of K(Cl, Br) mixed crystals with a reasonable accuracy.
Königsberger proposed the method of recursive Bayesian estimation, which allows the
thermodynamic excess parameters to be refined14.

References15–20 give the ∆mixGm(s) values for mixed crystals of the (K, Rb)X (X = Cl,
Br or I) and M(Cl, Br) (M = NH4, Rb or Cs) types derived from solubility data of the
simple salts and mixed crystals in aqueous solutions and from measurement of the
activity coefficients in saturated ternary solutions by the isopiestic method. The authors
calculated the Gibbs energy of mixing by using the following equation:

∆mixGm(s) = RT(x1 ln x1 + x2 ln x2 + x1 ln f1 + x2 ln f2)  , (3)

where fi is the rational activity coefficient in the solid phase. In a detailed study, Sang-
ster and Pelton21 summarized the data published before 1985 for 70 binary alkali halide
systems. The authors proposed simplified expressions for the dependence of the excess
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parameters ∆mixHm
E(s), ∆mixSm

E(s) and ∆mixGm
E(s) on the solid solution compositions given

in terms of the mole fractions xi. Where sufficient data were unavailable, they assumed
that the excess entropy is equal to zero and ∆mixGm

E(s) is independent of temperature.
The present paper provides a theoretical basis for a simplified method of calculation

of the thermodynamic characteristics [∆mixGm(s), ∆mixGm
E(s)] for the formation of mixed

crystals in water–salt systems and discusses limitations to its applicability. The applica-
tion of the method is demonstrated on six alkali–halide systems having (i) a common
anion (KCl–RbCl–H2O, KBr–RbBr–H2O and KI–RbI–H2O) or (ii) a common cation
(NH4Cl–NH4Br–H2O, RbCl–RbBr–H2O and CsCl–CsBr–H2O). The causes of dif-
ferences between the values obtained in this study and those reported in the literature
are also discussed. The ∆mixGm

E(s) values are calculated using the equation:

∆mixGm
E(s) = ∆mixGm(s) − ∆mixGm

id(s) = RT(x1 ln f1 + x2 ln f2)  . (4)

The results obtained are presented by expressions illustrating the dependence of
∆mixGm

E(s) on the composition of the mixed crystals. The simplified expressions are
deduced assuming that the entropy term ∆mixSm

E(s) is equal to zero and that in the poly-
nomial expression

∆mixHm
E(s) = xAxB(h0 + h1xB + h2xB

2 + …) (5)

only the first empirical coefficient (h0) is non-zero; hence, the “regular” solution model
is adopted. Graphical presentation of the results [∆mixGm

E(s) vs xi] documents that this
model is well suited to an accurate description of properties of mixed crystals formed
in the alkali–halide systems under consideration.

THEORETICAL

Based on the scheme proposed by McCoy and Wallace4 and applied in papers6–9, the
Gibbs energy of mixing is determined from the difference between the partial molar
Gibbs energies of each of the components in the liquid saturated ternary solution and in
the saturated binary solutions, i.e. from the differences in the activities of the compo-
nents in the solutions.

Let us write the reaction of mixed crystal formation as

x1A + x2B = Ax1
Bx2

  , (6)
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where A and B are the components of the mixed crystals and x1 and x2 are the mole
fractions of A and B in the solid phase, respectively. A and B can be anhydrous salts,
crystalline hydrates, or double salts with a constant number of water molecules. If the
water molecule content in the solid solution is not constant, then the chemical potential
of water should be introduced. The ∆mixGm(s) value for reaction (6) is determined from
the difference between the chemical potentials of the solid solution (µ(Ax1

Bx2
)) and the

initial components (µA and µB) according to Eq. (7):

∆mixGm(s) = µ(Ax1
Bx2

) − x1µA − x2µB  . (7)

The chemical potential of the solid solution is given by the expression:

µ(Ax1
Bx2

) = −RT[x1 ln aA(s) + x2 ln aB(s)]  , (8)

where aA(s) and aB(s) are the activities of the components in the solid solution.
The chemical potentials of the starting components (µA and µB) are calculated from

their activities in the saturated binary solutions (aA(s0) and aB(s0)):

dGi /dm = µi = −RT ln ai(s0)  . (9)

The equality of the chemical potentials of the components in the liquid (l, l0) and
solid phases (s, s0) is a prerequisite for the phase equilibrium:

µi(s) = µi(l),  µi(s0) = µi(l0),  and  hence,

ai(s) = ai(l),  ai(s0) = ai(l0) (10)

which leads to the widely applied Eqs (1).
Now, we propose a new approach to the calculation of the Gibbs energy of mixing,

where the ∆mixGm(s) value is not determined based on the change in the chemical
potential of each of the components during its transition from a saturated binary solu-
tion to a saturated ternary solution: instead, the transition from the eutectic solution to
the saturated ternary solution is treated.

Thus, let us consider the RbCl–RbBr–H2O ternary system where a continuous series
of mixed crystals of the Rb(Cl, Br) type is formed (Fig. 1). The curve 1 corresponds to
the saturated ternary solutions19. Assuming that no isomorphic co-crystallization of the
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components occurs and the system is a simple eutectic type, i.e. no mixed crystals but
only the simple substances which are components of the system (or their crystalline
hydrates) crystallize from the saturated solutions, the solubility isotherm in Fig. 1 will
transform into the curve 2. Point E corresponds to the so-called hypothetic eutectic.
This approximation has been used by Fanghänel and Emons22 to predict the solubility
isotherm of the KCl–MgCl2–H2O system at high temperatures, and by Christov et al.23

to predict the solubility isotherms of carnallite type quaternary systems.
According to the conditions of chemical and phase equilibrium in solutions saturated

with respect to a given salt of the composition α1A1 . α2A2 . α3A3, the value of the
logarithm of activity of this salt will be constant and equal to the logarithm of activity
in the saturated binary solution ln a(l0), [ln a(l0) = ln Ksp

0 ]:

ln a(α1, α2, α3) = α1 ln a1 + α2 ln a2 + α3 ln a3 = ln Ksp
0 (α1,α2,α3) = const  , (11)

where a1, a2 and a3 are the activities of the components A1, A2 and H2O in the saturated
solution, respectively, and α1, α2 and α3 denote the stoichiometric coefficients in the
salt.

The eutectic in the ternary systems is a point which satisfies simultaneously two
equations describing the solubility isotherms of two solid phases and representing the
solution of the systems, viz.

ln a(α1,α2,α3;m1,m2) = ln Ksp
0 (α1,α2,α3) = const′

ln a(α1,α2,α3;m1,m2) = ln Ksp
0 (α1,α2,α3) = const′′  , (12)

0                    3                   6                    9

9

6

3

0
mRbCl

mRbBr

1

2

E

E′

FIG. 1
Solubility isotherm of the RbCl–RbBr–H2O sys-
tem at T = 296.15 K: 1 experimental data by Ma-
karov et al., ref.19; 2 calculated values
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i.e. in the eutectic point the activities of the components in the ternary solution
(a1

eut, a2
eut) are equal to the activities of the components in the corresponding binary

solutions:

a1
eut = a1(l0)  and  a2

eut = a2(l0)  . (13)

It will be clear from the above considerations that if the theoretical solubility isotherm
is plotted in agreement with the conditions for thermodynamic equilibrium (conditions
(12)), then the maximum absolute value of the Gibbs energy of mixing can be deter-
mined based on the change in the chemical potential of each component during its
transition from the hypothetic eutectic solution (point E) to the corresponding saturated
ternary solution of the experimental solubility isotherm (point E′ in Fig. 1). The use of
the fundamental Pitzer equations allows determining the composition of the eutectic
solution (m1

eut, m2
eut) and the activities of the ternary solutions (a1(l), a2(l)). The aim is to

establish the composition (m1, m2) of the saturated ternary solution corresponding to the
eutectic.

The task can be simplified significantly by assuming that the system under consider-
ation satisfies reasonably the additivity rule. In this case there are two prerequisites:

1. With respect to the liquid phase. The system should obey the Zdanovskii rule24,
which means that the isoactivities of water should lie on straight lines over the whole
concentration region of the solutions.

2. With respect to the solid phase. The rational activity coefficients (f1 and f2) of the
components should be equal to each other, i.e. f1/f2 = 1 over the entire mixed crystal
composition region.

The case of ideal mixed crystal formation (f1 = f2 = 1) belongs here. The two condi-
tions are actually the conditions of the so-called stoichiometric saturation (dx = 0)
(refs12,13,25,26) combined with the two subconditions concerning the liquid phase (xaq = xact)
and the solid phase (xact = x) (ref.12). The problem of the fulfilment of the conditions 1
and 2 by the alkali–halide systems will be discussed in the following section.

Many water–salt systems in which solid solutions are formed obey the Zdanovskii
rule, and the numerical values for a series of properties of the mixed ternary solutions
of electrolytes are additive with respect to the properties of the binary solutions mixed.
If this rule is met, the subintegral function in the McKay–Perring equation becomes
zero and the equations for the activity coefficients γ1 and γ2 of the components in the
ternary solution can be written6 as

γ1 = 
a1(l0)

m1 + m2
  ;       γ2 = 

a2(l0)
m1 + m2

  . (14)
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The index l0 refers to the binary solution which is isopiestic with respect to the
ternary solution (m1, m2).

Equations (14) can be rearranged by simple transformations to:

a1(l)
a1(l0)

 = 
m1

m1 + m2
  ;     

a2(l)
a2(l0)

 = 
m2

m1 + m2
  . (15)

From the latter equation it is evident that if the systems follow the Zdanovskii rule, the
activity ratio is constant for a constant mole fraction in the liquid phase. Then, in the
corresponding saturated ternary solution, the mole fraction xaq of each component
should be the same as in the eutectic solution (xaq

eut):

m1

m1 + m2
 = 

m1
eut

m1
eut + m2

eut  ;     
m2

m1 + m2
 = 

m2
eut

m1
eut + m2

eut  . (16)

The composition (m1, m2) can also be determined graphically. It corresponds to the
point of intersection of the solubility isotherm with the beam connecting the hypothetic
eutectic and the water angle (point E′ in Fig. 1). If the model regular solution describes
the system under consideration with a sufficient accuracy and the conditions 1 and 2
are met, then the maximum ∆mixGm(s) value can be calculated by using the equation:

∆mixGm(s) = 0.5RT ln 
a1(l)a2(l)

a1(l0)a2(l0)
  , (17)

where a1(l) and a2(l) are the activities of components in the saturated ternary solution
in which the mole fraction of each component is equal to that in the hypothetic eutectic.
The method suggested allows the mixing energy of crystals to be calculated based on
the solubility in the saturated binary and ternary solutions alone, using the approxima-
tion that the corresponding system obeys the additivity rule.

Equation (17) was deduced directly from conditions (7)–(10) and represents a variant
of Eq. (1) for x1 = x2 = 0.5.

CALCULATION OF THE GIBBS ENERGY OF MIXING

The method proposed in this paper was combined with the fundamental Pitzer equa-
tions for determination of the thermodynamic characteristics [∆mixGm(s), ∆mixGm

E(s)] of
mixed crystals of the (K, Rb)X and M(Cl, Br) types formed in the KCl–RbCl–H2O,
KBr–RbBr–H2O, KI–RbI–H2O, NH4Cl–NH4Br–H2O, RbCl–RbBr–H2O and CsCl–CsBr–H2O
water–salt systems.
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All of the Pitzer binary parameters of interionic interaction (β(0), β(1) and cϕ) needed
for the simulation were taken from the literature5,7,9,23,27–32, and parameters applicable
to the widest concentration ranges (including saturation of the binary solutions) at the
lowest possible standard deviations (σ) were used. Their applicability was proved by
simulating ternary systems of the MX–M′X2–H2O type (M′ = Mg, Mn, Ni, Co, Cu; X =
Cl, Br) (refs27–32) and carnallite type quaternary systems23, as well as by calculation of
∆mixGm(s) based on Eq. (2) (refs7,9).

The values of the logarithm of the thermodynamic solubility product, ln Ksp
0 , were

calculated on the basis of the binary parameters (Table I) and the saturated binary
solution concentrations (ms). The small differences between the ln Ksp

0  values calculated
in this paper (Table II) and reported in refs7,27,30–32 are due to the different ms values
used in the calculation.

The ternary interionic interaction parameters θMN and ψMNX for the KCl–RbCl–H2O
and RbCl–RbBr–H2O systems were taken from ref.23. For the remaining four systems,
the θMN and ψMNX values were calculated assuming that the systems obey the Zdanovskii
rule, i.e. based on data of the binary subsystems alone. This approach has been pro-
posed by Filippov and Fedorov33 for water–salt systems in which mixed crystals are
formed, and has been applied with success in refs6–9. The values obtained (Table III)
are very low.

Using isopiestic data for the ternary solutions, Pitzer and Kim3 have calculated the
ternary parameters of interionic interaction for more than 50 water–salt systems. The
results presented by them show that the θMN and ψMNX values are very low and their use

TABLE I
The Pitzer binary parameters for the MX–H2O systems at T = 298.15 K

System β(0) β(1) cϕ mmax

   NH4Cl–H2O 0.0521 0.1916 –0.0030 7.06

   NH4Br–H2O 0.0618 0.1635 –0.0042 7.63

   KCl–H2O 0.0483 0.2122 –0.0008 4.88

   KBr–H2O 0.0559 0.2296 –0.0017 5.67

   KI–H2O 0.0658 0.3064 –0.0022 8.56

   RbCl–H2O 0.0409 0.1919 –0.0007 7.51

   RbBr–H2O 0.0370 0.1520 –0.0007 6.40

   RbI–H2O 0.0427 0.1107 –0.0016 7.72

   CsCl–H2O 0.0390 –0.0374 –0.0012 11.30 

   CsBr–H2O 0.0301 0.0029 –0.0005 5.67
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(rather than the assumption of θMN = ψMNX = 0) does not always lead to better results
concerning the properties of the ternary solutions (ln γ or ϕ). In this paper, θMN and
ψMNX were calculated by using the Zdanovskii rule, and the values obtained are very
low as well. A similar situation has also been established for other systems where
mixed crystals are formed6–10. From this it can be deduced that the solutions investi-
gated follow reasonably the Zdanovskii rule. Moreover, the very small values of θMN

and ψMNX also determine the very weak ionic interactions of the M–N and M–N–X type
in ternary solutions of the MX–NX–H2O type, so that for the liquid phase it can be
assumed that the active mole fraction is equal to the mole fraction (xaq = xact). To prove
condition 1, we simulated the KCl–RbCl–H2O system and plotted the theoretical solu-
bility isotherms using the θMN and ψMNX values given in Table III and assuming that
θMN = ψMNX = 0. The results obtained indicate that the molalities in the hypothetic
eutectic change only negligibly (Table IV). This allowed simulation while neglecting

TABLE II
Calculated values of the logarithm of the thermodynamic solubility product ln Ksp

0  where ms is the
molality of the saturated binary solutions

Composition salt ln Ksp
0 ms Composition salt ln Ksp

0 ms

         NH4Cl 2.860 7.45          NH4Br 3.066 8.02

         KCl 2.089 4.83          KBr 2.600 5.75

         RbCl 3.023 7.78          RbBr 2.526 6.74

         CsCl 3.485 11.33          CsBr 1.905 5.79

         KI 3.999 8.90          RbI 2.780 7.63

TABLE III
The Pitzer ternary parameters for MX–M′X′–H2O systems at T = 298.15 K

System θMN ψMNX

      KCl–RbCl–H2O –0.00007 –0.00001

      KBr–RbBr–H2O –0.00076 –0.00005

      KI–RbI–H2O –0.00100 –0.00005

      NH4Cl–NH4Br–H2O –0.00006  0.00002

      RbCl–RbBr–H2O –0.00001 –0.00001

      CsCl–CsBr–H2O –0.00010  0.00001
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the ternary interactions in the ternary alkali–halide systems under investigation. The
same approach has been adopted in refs7–10.

In order to check how the condition 2 concerning the solid phase is met, the activity
coefficients of the components in the mixed crystal phase (fi) were determined for all
the systems investigated. The fi values were evaluated from the values of activity of the
ternary liquid (ai(l)) and binary liquid (ai(l0)) solutions calculated based on the Pitzer
equation (ref.7) and from the experimental data on the composition of the mixed crys-
tals15–20. The results are presented in Fig. 2 as a dependence of fi on the solid phase
composition (xi). In accordance with the positive deviations from the ideal mixed crys-
tals [∆mixGm

E(s) > 0], the fi values are larger than one. The curves for all the systems
under consideration are almost symmetric, the fi values decreasing with increasing mole
fraction. Of particular importance is the fact that the point of intersection of the curves
(where f1 = f2) lies at xi ≈ 0.5, i.e. at the composition for which ∆mixGm(s) takes its
maximum value. This implies that for the mixed crystal composition of interest, i.e. xi = 0.5,
condition 2 is met and Eq. (17) can be applied to determine the Gibbs energy of mixing.
The results are given in Table V and Fig. 3. When calculating the excess Gibbs energy,
we proceeded from the assumption that the regular model of mixing describes adequa-
tely the properties of the alkali–halide systems investigated, neglecting the excess para-
meter G2

E(s) in Eq. (2). The same approach has also been used in refs7–9,13,21,34–36.
The results obtained in the present paper are in a very good agreement with the

values calculated based on Eq. (2) (ref.7). The deviation never exceeds 5 per cent. The
small differences in the values of the excess parameters G1

E(s) are due to the slight shift

TABLE IV
Composition of the hypothetic eutectic in molalities

Mixed crystals m1
eut m2

eut

        (K, Rb)Cla         mKCl = 2.20         mRbCl = 6.45

        (K, Rb)Clb         mKCl = 2.21         mRbCl = 6.45

        (K, Rb)Clc         mKCl = 2.19         mRbCl = 6.53

        (K, Rb)Bra         mKBr = 3.65         mRbBr = 4.70

        (K, Rb)Ia         mKI = 7.08         mRbI = 3.92

        NH4(Cl, Br)a         mNH4Cl = 5.51         mNH4Br = 6.50

        Rb(Cl, Br)a         mRbCl = 5.73         mRbBr = 3.94

        Cs(Cl, Br)a         mCsCl = 10.14         mCsBr = 2.24

a Based on the ln Ksp
0  values from Table II, assuming that θMN = ψMNX = 0. b Based on the ln Ksp

0

values from Table II, assuming that θMN = –0.00007, ψMNX = –0.00001. c Calculated using D’Ans and
Busch38 experimental data on the solubility, [ln Ksp

0 (KCl) = 2.094 and ln Ksp
0 (RbCl) = 3.045] and θMN

= ψMNX = 0.
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FIG. 2
Rational activity coefficients fi vs composition (xi) for a (K, Rb)Cl, b (K, Rb)Br, c (K, Rb)I,
d NH4(Cl, Br), e Rb(Cl, Br) and f Cs(Cl, Br) mixed crystals at T = 298.15 K
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FIG. 3
Plot of the excess Gibbs energy ∆mixGm

E(s) (kJ mol–1) vs composition (xi) for a (K, Rb)Cl, b (K, Rb)Br, c (K, Rb)I,
d NH4(Cl, Br), e Rb(Cl, Br) and f Cs(Cl, Br) mixed crystals at T = 298.15 K. a Theoretical results:
−−−−  ,  . . . −−−  . . . present model, data ref.15 and ref.38, respectively; − − − ref.7; . . −− . . ref.10. Experimental re-
sults: + ref.15. b Theoretical results: −−−− present model: − − − ref.7; . . −− . . ref.10; . − . − . ref.21. Experimental
results: + ref.16. c Theoretical results: −−−− present model; − − − ref.7; . . −− . . ref.10. Experimental
results: +, ref.17. d Theoretical results: −−−− present model; − − − ref.7. Experimental results: + ref.18.
e Theoretical results: −−−− present model; − − − ref.7; . . −− . . ref.10; . − . − . ref.21. Experimental re-
sults: + ref.19. f Theoretical results: −−−− present model; − − − ref.7. Experimental results: + ref.20

0.0          0.2          0.4           0.6           0.8           1.0

0.8

0.6

0.4

0.2

0.0
xRbCl

∆mixG
E(s)

e

0.0         0.2           0.4           0.6           0.8           1.0

1.2

1.0

0.8

0.6

0.4

0.2

0.0
xCsCl

∆mixGE(s) f

0.0          0.2          0.4           0.6           0.8           1.0

0.8

0.6

0.4

0.2

0.0
xKI

∆mixG
E(s)

c

0.0         0.2           0.4           0.6           0.8           1.0

1.2

1.0

0.8

0.6

0.4

0.2

0.0
xNH4Cl

∆mixGE(s) d

0.0          0.2          0.4           0.6           0.8           1.0

1.2

1.0

0.8

0.6

0.4

0.2

0.0
xRbCl

∆mixG
E(s) a

0.0         0.2           0.4           0.6           0.8           1.0

1.2

1.0

0.8

0.6

0.4

0.2

0.0
xRbBr

∆mixGE(s) b

1596 Christov:

Collect. Czech. Chem. Commun. (Vol. 61) (1996)



of the maximum of ∆mixGm
E(s) towards higher mole fractions of the component with the

smaller ionic radius of the exchanging ion (for the common-anion systems the shift is
towards higher mole fractions of KX, while for common-cation systems, it is towards
higher mole fractions of MCl). It is interesting that the composition for which the maxi-
mum ∆mixGm

E(s) is established (calculated by Eq. (2)) corresponds precisely to the point
of intersection of the curves expressing the dependence of fi on xi (Fig. 2). For the
alkali–halide systems, this deviation from symmetry, i.e. from the model of the regular
solution, has also been discussed by others authors7,10,34,37. As a general rule, the larger
the cations and/or anions and the smaller the difference between the radii of the two
cations in the common-anion binary system (or between the two anions in the common-
cation binary system), the more closely the approximation of a one- or two-term poly-
nomial expansion for ∆mixHm

E(s) (Eq. (5)) and ∆mixSm
E(s) = 0 is obeyed21. This is in

agreement with our results: with the (K, Rb)Cl, (K, Rb)Br, NH4(Cl, Br) and Rb(Cl, Br)
mixed crystals, a deviation from symmetry is observed, as well as differences between
the G1

E(s) values calculated by Eq. (2) (column c in Table V) and those determined by
the method proposed herein (column b, Table V), while for the systems having the
largest common ion ((K, Rb)I and Cs(Cl, Br)) such deviations are minimal. This im-
plies that the latter two systems approach most closely the regular solution model, i.e.
the entropy term plays the least significant role in them.

TABLE V
Excess parameters at T = 298.15 K

Mixed crystals
G1

E(s), kJ mol–1

aa bb cc dd ee

   (K, Rb)Cl 3.0 ± 0.5 4.264
(3.335)

4.1 ± 0.5 3.345 ± 0.175 1.5

   (K, Rb)Br 2.2 ± 0.6 3.021 3.0 ± 0.4 2.705 ± 0.035 2.0

   (K, Rb)I 1.7 ± 0.0 2.517 2.5 ± 0.5 2.375 ± 0.018 1.7

   NH4(Cl, Br) 4.2 ± 0.7 3.688 3.5 ± 0.5 – –

   Rb(Cl, Br) 3.1 ± 0.4 2.690 2.8 ± 0.7 2.915 ± 0.075 2.0

   Cs(Cl, Br) 3.5 ± 0.3 4.340 4.3 ± 0.7 – –

a Experimental data, system KCl–RbCl–H2O, ref.15; KBr–RbBr–H2O, ref.16; KI–RbI–H2O, ref.17;
NH4Cl–NH4Br–H2O, ref.18; RbCl–RbBr–H2O, ref.19; CsCl–CsBr–H2O, ref.20. The data results are
summarized in ref.7. b Calculated according to Eq. (17) and experimental data15–20 (data from ref.38 in
parentheses). c Calculated according to Eq. (1) and presented in ref.7. d From fits to Lippmann diag-
rams10 (for the mixed crystals (K, Rb)I, calculated according to equation G1

E(s) = H1
E(s) (1 – T/T0),

where H1
E(s) = 2.685 ± 20, T0 = 2 590). e Generalized parameters of Sangster and Pelton21.
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Relatively larger are the differences between the values obtained in this paper and
those obtained from fits to the Lippmann diagrams10. Since we used binary parameters
which are very close to those used by Königsberger10 and ternary interactions in the
solutions were neglected (θMN = ψMNX = 0) in both papers, it is reasonable to assume
that the deviations are largely due to the different solubility data employed in the cal-
culations. In the present paper, the data were taken from papers in which not only the
compositions of the liquid and solid phases but also the thermodynamic characteristics
of the mixing process are given15–20. However, in order to check the prediction, we
simulated thermodynamically the KCl–RbCl–H2O system and determined the composi-
tion of the hypothetic eutectic point (Table IV) and the G1

E(s) value (Table V) using the
solubility data obtained by D’Ans and Busch38, which have also been utilized by Kö-
nigsberger10. The results are in a very good agreement (Fig. 3a and Table V).

This work was supported by the Bulgarian Ministry of Science and Education, Project X-594.
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