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A simplified model has been set up for calculation of the molar Gibbs energy of nixif®.(s)
in crystals based on the assumption of a complete liquid—solid thermodynamic equilibrium |
water—salt systems. The procedure allowsARhgG,,(s) values to be calculated from the experime
tal solubility data for the saturated binary and ternary solutionsATR&,,(s) values and the exces
Gibbs energy of mixingAmixGE](s) were calculated for six alkali-halide systems (KCI-RbGGH
KBr—RbBr-H,0, KI-Rbl-H,0, NH,CI-NH,Br-H,0, RbCI-RbBr-HO and CsCI-CsBr-}D). The
results obtained were compared with experimental data taken from the literature and values
lated based on various theoretical approaches.
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Elucidation of the thermodynamics of mixed crystal formation is of both theoretica
practical importance. The determination of the most significant characteristics o
process, i.e. the molar Gibbs energy of mixikg,G,(S), the excess Gibbs energy
mixing AmixGE(S), the excess enthalpy of mixidg,,HE(s), and the excess entropy
mixing A Sh(S), is also of special interest for a further development of the therm
namics of solid solutions.

The low values of these characteristics and the complexity of the experim
methods, such as the isopiestic method and direct calorimetric measurements on
mixed crystal samples, are sources of considerable differences, calling for the de
ment of new theoretical models. A significant advance in this respect has been ac
after the development of the Pitzer ion-interaction mieglevhich permits calculation
of activity coefficients in unsaturated and saturated solutions of electrolytes wii
accuracy of 2 to 6 per cént

As early as the fifties, McCoy and Walldcealculated thed,,,G,(s) values for
K(CI, Br) mixed crystals based on the equations:

AL Gr(9/RT=x; Inay(s) + %, Inay(s) =
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=xq[In & (1) = In & ()] +x;[In ay(l) —Inay(lo)] , @

where the indices s, | anglrefer to mixed crystals and the saturated ternary and bil
solutions, respectively.

Harvie, Mgller and WeaPand Filippov and Rumyantsgapplied Eqs 1) along with
the Pitzer model to the determination of the thermodynamic characteristics of the
cess of mixing.

In our previous studiés’we proved the applicability of the equations to the deter
nation of A,,,G(S) andA,GE(s) for a series of systems which involved mixed cn
tals of both anhydrous salts and crystalline hydrates.

Konigsbergel® determined the excess Gibbs energy of the solid phase based &) E
deduced from the subregular mixing model,

D Gi(S) = X(1 = X)[GE(s) + G(s)(1 - 2] , @

mix

where GE(s) and G5(s) are thermodynamic excess parameters. The parameters au
tained from fits to Lippmann diagrafisin which the total solubility consta@K is
plotted vs mole fractions of the solid phase and activity fractiong,of the aqueous
phase at thermodynamic equilibrium. Kénigsberger and Gamsfadgtermined the
thermodynamic properties based on the thermodynamic equilibrium conditions
system with a variable composition of the solid phase (equality of chemical pote
in the solid and liquid phases) and the stoichiometric saturation condiienOd In
response to that paper, Glynn and Realtidemonstrated that the regular solid—liqu
model describes the properties of K(CI, Br) mixed crystals with a reasonable acci
Koénigsberger proposed the method of recursive Bayesian estimation, which allov
thermodynamic excess parameters to be retfhed

Reference'$—?give theA,,,G(s) values for mixed crystals of the (K, Rb)X (X = C
Br or I) and M(CI, Br) (M = NH, Rb or Cs) types derived from solubility data of tl
simple salts and mixed crystals in aqueous solutions and from measurement
activity coefficients in saturated ternary solutions by the isopiestic method. The at
calculated the Gibbs energy of mixing by using the following equation:

DGS9 = RTX InXg + % In X, + % Infy + %5, Infy) 3)

wheref; is the rational activity coefficient in the solid phase. In a detailed study, S
ster and Peltait summarized the data published before 1985 for 70 binary alkali h
systems. The authors proposed simplified expressions for the dependence of the
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parameterd;, HE(s), A S (s) andA,,i,GE(s) on the solid solution compositions give
in terms of the mole fractions. Where sufficient data were unavailable, they assur
that the excess entropy is equal to zero AgdGE(s) is independent of temperature.

The present paper provides a theoretical basis for a simplified method of calcu
of the thermodynamic characteristi@s,[G(S), AmixGE,(s)] for the formation of mixed
crystals in water—salt systems and discusses limitations to its applicability. The ar
tion of the method is demonstrated on six alkali-halide systems having (i) a cor
anion (KCI-RbCI-HO, KBr-RbBr-HO and KI-Rbl-HO) or (ii)) a common cation
(NH,CI-NH,Br—H,0O, RbCI-RbBr-HO and CsCI-CsBr-kD). The causes of dif-
ferences between the values obtained in this study and those reported in the lit
are also discussed. The,;,GE(s) values are calculated using the equation:

D G(S) = B Gin(S) ~ B Gia(9) = RT(xq Infy +%, Inf) @

The results obtained are presented by expressions illustrating the depende
AnixGE(s) on the composition of the mixed crystals. The simplified expressions
deduced assuming that the entropy t&m S5(s) is equal to zero and that in the pol
nomial expression

AixHE(S) = Xaxg(ho + hyxg + @ + ...) ©)

only the first empirical coefficienthg) is non-zero; hence, the “regular” solution mod
is adopted. Graphical presentation of the resdlfs,GE(s) vsx] documents that this
model is well suited to an accurate description of properties of mixed crystals fo
in the alkali-halide systems under consideration.

THEORETICAL

Based on the scheme proposed by McCoy and WAltawk applied in papets, the
Gibbs energy of mixing is determined from the difference between the partial r
Gibbs energies of each of the components in the liquid saturated ternary solution
the saturated binary solutions, i.e. from the differences in the activities of the cc
nents in the solutions.

Let us write the reaction of mixed crystal formation as

XA +xB=AB, , (O]
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where A and B are the components of the mixed crystalsxaadd x, are the mole
fractions of A and B in the solid phase, respectively. A and B can be anhydrous
crystalline hydrates, or double salts with a constant number of water molecules.
water molecule content in the solid solution is not constant, then the chemical po
of water should be introduced. Thg,,G,(S) value for reactiong) is determined from
the difference between the chemical potentials of the solid solul(@r}lez)) and the
initial components|{, andug) according to Eq.7):

DixGin(8) = M(A By) = Xl ~ XoHg - @)

The chemical potential of the solid solution is given by the expression:

M(AB,) = -RTx, Inay(e) + %, Inag(9)] , ®

wherea, (s) andag(s) are the activities of the components in the solid solution.
The chemical potentials of the starting componeptsafidyg) are calculated from
their activities in the saturated binary solutioag($,) andag(sy)):

dG; /dm=; =-RTIn g(sy) - 9)

The equality of the chemical potentials of the components in the liquig) @ntl
solid phases (sgpis a prerequisite for the phase equilibrium:

Hi(S) = wi(1), Hi(sp) =Hi(lp), and hence,
a(s) =a(l), a(sp) =a(lo) (10

which leads to the widely applied EdH.(

Now, we propose a nhew approach to the calculation of the Gibbs energy of m
where theA,,G(s) value is not determined based on the change in the cher
potential of each of the components during its transition from a saturated binary
tion to a saturated ternary solution: instead, the transition from the eutectic solut
the saturated ternary solution is treated.

Thus, let us consider the RbCI-RbBtHternary system where a continuous ser
of mixed crystals of the Rb(Cl, Br) type is formed (Fig. 1). The cureerresponds to
the saturated ternary solutidfsAssuming that no isomorphic co-crystallization of tl
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components occurs and the system is a simple eutectic type, i.e. no mixed cryst
only the simple substances which are components of the system (or their crys
hydrates) crystallize from the saturated solutions, the solubility isotherm in Fig. 1
transform into the curve. Point E corresponds to the so-called hypothetic eutec
This approximation has been used by Fanghanel and Efitorgredict the solubility
isotherm of the KCI-MgGHH,O system at high temperatures, and by Christov &t ¢
to predict the solubility isotherms of carnallite type quaternary systems.

According to the conditions of chemical and phase equilibrium in solutions satu
with respect to a given salt of the compositm\; . a,A, . azA; the value of the
logarithm of activity of this salt will be constant and equal to the logarithm of acti
in the saturated binary solution #&l), [In a(ly) = In Kgd:

Ina(aq, a, 05) =0, Ina; +a,lna,+aglnag=In Kgp(cxl,cxz,cxg) =const, 11

wherea,, a, andas are the activities of the componentg A, and HO in the saturated
solution, respectively, and,, a, and a; denote the stoichiometric coefficients in tf
salt.

The eutectic in the ternary systems is a point which satisfies simultaneousl
equations describing the solubility isotherms of two solid phases and representi
solution of the systems, viz.

In a(ary,0,,013;my,m,) = In Kg{0;,0,,05) = const

In a(at;,0,,013;my,m,) = In Kg(a,a,,05) = const 12

Fe. 1
Solubility isotherm of the RbCI-RbBr-8 sys-
tem atT = 296.15 K:1 experimental data by Ma- 0 0
karov et al., ret®. 2 calculated values
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i.e. in the eutectic point the activities of the components in the ternary soll
(a8t ag") are equal to the activities of the components in the corresponding b
solutions:

agUt=a,(ly) anda''=ay(ly) . @3

It will be clear from the above considerations that if the theoretical solubility isott
is plotted in agreement with the conditions for thermodynamic equilibrium (condit
(12)), then the maximum absolute value of the Gibbs energy of mixing can be ¢
mined based on the change in the chemical potential of each component dur
transition from the hypothetic eutectic solution (point E) to the corresponding satu
ternary solution of the experimental solubility isotherm (poininB~ig. 1). The use of
the fundamental Pitzer equations allows determining the composition of the eu
solution (Y mg") and the activities of the ternary solutioag(l), ay(1)). The aim is to
establish the compositiomy, m,) of the saturated ternary solution corresponding to
eutectic.

The task can be simplified significantly by assuming that the system under con
ation satisfies reasonably the additivity rule. In this case there are two prerequisi

1. With respect to the liquid phase. The system should obey the Zdanovskij r
which means that the isoactivities of water should lie on straight lines over the \
concentration region of the solutions.

2. With respect to the solid phase. The rational activity coefficiépgndf,) of the
components should be equal to each otherf,ifie.= 1 over the entire mixed crysta
composition region.

The case of ideal mixed crystal formatidp< f, = 1) belongs here. The two cond
tions are actually the conditions of the so-called stoichiometric saturatios @)
(refs'%132>2§ combined with the two subconditions concerning the liquid phgge X,c)
and the solid phase{,= x) (ref1?). The problem of the fulfilment of the conditiofis
and?2 by the alkali—halide systems will be discussed in the following section.

Many water—salt systems in which solid solutions are formed obey the Zdanc
rule, and the numerical values for a series of properties of the mixed ternary sol
of electrolytes are additive with respect to the properties of the binary solutions n
If this rule is met, the subintegral function in the McKay—Perring equation becc
zero and the equations for the activity coefficieptandy, of the components in the
ternary solution can be writttas

a(le) _ally)

Cmtm, Zom+m, 49

1
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The index } refers to the binary solution which is isopiestic with respect to
ternary solutionrfy, m,).
Equations 14) can be rearranged by simple transformations to:

ay(l) _ m &) _ m,
all) m+m " aly) m+m,

)

From the latter equation it is evident that if the systems follow the Zdanovskii rule
activity ratio is constant for a constant mole fraction in the liquid phase. Then, i
corresponding saturated ternary solution, the mole fractigof each component
should be the same as in the eutectic solubkgg):(

ml _ mciut . m2 _ mezaut
ml+n'12_rne:iut+rn(2§Ut ’ ml+n'12_rne:iut+rn(2§Ut )

16)

The composition rfy, m,) can also be determined graphically. It corresponds to
point of intersection of the solubility isotherm with the beam connecting the hypot
eutectic and the water angle (poiritik Fig. 1). If the model regular solution describ
the system under consideration with a sufficient accuracy and the conditemd?2

are met, then the maximufy,;,G,(s) value can be calculated by using the equatiol

ay(ax(l)

BpixGrn(8) = 0.RTIn ay(lo)azx(lo)

a7

wherea,(I) anday(l) are the activities of components in the saturated ternary solt
in which the mole fraction of each component is equal to that in the hypothetic eut
The method suggested allows the mixing energy of crystals to be calculated ba:
the solubility in the saturated binary and ternary solutions alone, using the appro
tion that the corresponding system obeys the additivity rule.

Equation {7) was deduced directly from condition§-(10) and represents a variar
of Eq. @) for x; = x,= 0.5.

CALCULATION OF THE GIBBS ENERGY OF MIXING

The method proposed in this paper was combined with the fundamental Pitzer
tions for determination of the thermodynamic characteristigs Gm(S), AnixGE ()] of
mixed crystals of the (K, Rb)X and M(CI, Br) types formed in the KCI-RbGQB:H
KBr—RbBr-H,0, KI-Rbl-H,0, NH,CI-NH,Br-H,0, RbCI-RbBr-HO and CsCI-CsBr—}D
water—salt systems.
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All of the Pitzer binary parameters of interionic interactiff®)( B andc?) needed
for the simulation were taken from the literafut&2327-32 and parameters applicabl
to the widest concentration ranges (including saturation of the binary solutions)
lowest possible standard deviatiory (vere used. Their applicability was proved t
simulating ternary systems of the MX-X4—H,O type (M = Mg, Mn, Ni, Co, Cu; X =
Cl, Br) (ref¢’-33 and carnallite type quaternary systéfas well as by calculation o
0 Gr(s) based on Eq2) (refs”9).

The values of the logarithm of the thermodynamic solubility produd{gdnwere
calculated on the basis of the binary parameters (Table I) and the saturated
solution concentrationsrf). The small differences between theK@g,values calculated
in this paper (Table 1) and reported in ref63%-3%are due to the different® values
used in the calculation.

The ternary interionic interaction paramet8yg, and ix for the KCI-RbCI-HO
and RbCI-RbBr-kD systems were taken from réf.For the remaining four system:
the By and Yynx Values were calculated assuming that the systems obey the Zdan
rule, i.e. based on data of the binary subsystems alone. This approach has be
posed by Filippov and Fedort\for water—salt systems in which mixed crystals &
formed, and has been applied with success iff1&f§he values obtained (Table 1lI
are very low.

Using isopiestic data for the ternary solutions, Pitzer and® Kame calculated the
ternary parameters of interionic interaction for more than 50 water—salt systems
results presented by them show that8fg andyy,x values are very low and their us

TaBLE |
The Pitzer binary parameters for the MX@Hsystems al = 298.15 K

System B(0) B(1) c? Minax
NH4CI-H20O 0.0521 0.1916 —0.0030 7.06
NHsBr—H>O 0.0618 0.1635 —0.0042 7.63
KCI-H0 0.0483 0.2122 —0.0008 4.88
KBr—H20O 0.0559 0.2296 -0.0017 5.67
KI-H20 0.0658 0.3064 -0.0022 8.56
RbCI-HO 0.0409 0.1919 -0.0007 751
RbBr-H0 0.0370 0.1520 —0.0007 6.40
Rbl-H0 0.0427 0.1107 -0.0016 7.72
CsCl-R0O 0.0390 -0.0374 -0.0012 11.30
CsBr—-HO 0.0301 0.0029 —0.0005 5.67
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(rather than the assumption &y = Wunx = 0) does not always lead to better resu
concerning the properties of the ternary solutionsy(br ¢). In this paperg,,, and

Wunx Were calculated by using the Zdanovskii rule, and the values obtained are
low as well. A similar situation has also been established for other systems \
mixed crystals are form&d®. From this it can be deduced that the solutions inve
gated follow reasonably the Zdanovskii rule. Moreover, the very small valuggof
andy,,nx also determine the very weak ionic interactions of the M—N and M—N-X 1
in ternary solutions of the MX-NX—® type, so that for the liquid phase it can |
assumed that the active mole fraction is equal to the mole fragfjgn X,.). To prove

condition1, we simulated the KCI-RbCI-}@ system and plotted the theoretical sol
bility isotherms using th®,,y and y,,yx values given in Table Il and assuming th
Bun = Wunx = 0. The results obtained indicate that the molalities in the hypott
eutectic change only negligibly (Table 1V). This allowed simulation while neglec

TasLE Il

Calculated values of the logarithm of the thermodynamic solubility producgplwhere m’ is the
molality of the saturated binary solutions

Composition salt IrKgp m® Composition salt IrK(S)p m®
NH.CI 2.860 7.45 NEBr 3.066 8.02
KCI 2.089 4.83 KBr 2.600 5.75
RbCI 3.023 7.78 RbBr 2.526 6.74
CsCl 3.485 11.33 CsBr 1.905 5.79
Kl 3.999 8.90 Rbl 2.780 7.63
TasLE IlI

The Pitzer ternary parameters for MX5W-H,O systems al = 298.15 K

System Bwn Wnmnix
KCI-RbCI-RHO —0.00007 —0.00001
KBr-RbBr-HO —0.00076 —0.00005
KI-Rbl-HO —0.00100 —0.00005
NH;CI-NH4Br—H-0 —0.00006 0.00002
RbCI-RbBr-HO —0.00001 —0.00001
CsCI-CsBr-HO —0.00010 0.00001
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the ternary interactions in the ternary alkali-halide systems under investigation
same approach has been adopted i T&fs

In order to check how the conditi@hconcerning the solid phase is met, the activ
coefficients of the components in the mixed crystal phisevére determined for all
the systems investigated. Thealues were evaluated from the values of activity of
ternary liquid &(I)) and binary liquid &(ly)) solutions calculated based on the Pitz
equation (ref) and from the experimental data on the composition of the mixed ¢
tals'®>=2% The results are presented in Fig. 2 as a dependerfc@mfthe solid phase
composition X;). In accordance with the positive deviations from the ideal mixed ¢
tals A, GE(s) > 0], thef; values are larger than one. The curves for all the syst
under consideration are almost symmetric,f{iv@lues decreasing with increasing mc
fraction. Of particular importance is the fact that the point of intersection of the ci
(wheref, = f,) lies atx; = 0.5, i.e. at the composition for whidy,,G,(s) takes its
maximum value. This implies that for the mixed crystal composition of interest, +.€.5,
condition2 is met and Eqg.1(7) can be applied to determine the Gibbs energy of mixi
The results are given in Table V and Fig. 3. When calculating the excess Gibbs e
we proceeded from the assumption that the regular model of mixing describes a
tely the properties of the alkali-halide systems investigated, neglecting the exces
meterG5(s) in Eq. ). The same approach has also been used ifr%éfg1:34-36

The results obtained in the present paper are in a very good agreement w
values calculated based on ER) (ref.”). The deviation never exceeds 5 per cent. T
small differences in the values of the excess param@§és$ are due to the slight shif

TaBLE IV
Composition of the hypothetic eutectic in molalities

Mixed crystals meut msUt

(K, Rb)Ct mkcl = 2.20 MRbcl = 6.45
(K, Rb)Ch Mkl = 2.21 MRbcl = 6.45
(K, Rb)Cf mkcl = 2.19 MRbcl = 6.53
(K, Rb)Bf mkpr = 3.65 MRber = 4.70
(K, Rb)ft mk) = 7.08 MRp = 3.92
NHs(ClI, Br)? MNH4cl = 5.51 MNH4Br = 6.50
Rb(Cl, Br} MRpcl = 5.73 MRper = 3.94
Cs(Cl, B Mcscr = 10.14 Mesp, = 2.24

@ Based on the II’((S)p values from Table II, assuming th@{y = Wunx = 0. ° Based on the II’((S)p
values from Table I, assuming th = —0.00007 Pyynx = —0.00001° Calculated using D’Ans and
Buscl?® experimental data on the solubility, K§4KCI) = 2.094 and IKKS{RbCI) = 3.045] andyy

= Yunx = 0.
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of the maximum of\,;, GE(s) towards higher mole fractions of the component with
smaller ionic radius of the exchanging ion (for the common-anion systems the s
towards higher mole fractions of KX, while for common-cation systems, it is tow
higher mole fractions of MCI). It is interesting that the composition for which the m
mum A, GE(s) is established (calculated by EB))(corresponds precisely to the poil
of intersection of the curves expressing the dependendeoofx; (Fig. 2). For the
alkali—halide systems, this deviation from symmetry, i.e. from the model of the re
solution, has also been discussed by others alitots®’ As a general rule, the large
the cations and/or anions and the smaller the difference between the radii of tf
cations in the common-anion binary system (or between the two anions in the con
cation binary system), the more closely the approximation of a one- or two-term
nomial expansion fol\,,HE(s) (Eq. B)) and A, S(s) = 0 is obeyed. This is in

agreement with our results: with the (K, Rb)CI, (K, Rb)Br, K&, Br) and Rb(ClI, Br)

mixed crystals, a deviation from symmetry is observed, as well as differences be
the GE(s) values calculated by Eq)((column c in Table V) and those determined

the method proposed herein (column b, Table V), while for the systems havin
largest common ion ((K, Rb)l and Cs(Cl, Br)) such deviations are minimal. This
plies that the latter two systems approach most closely the regular solution mod
the entropy term plays the least significant role in them.

TaBLE V
Excess parameters at= 298.15 K

G5(s), kJ mot*
Mixed crystals

& bP c d? e

(K, Rb)CI 3.0+ 0.5 4.264 41+05 3.345+ 0.175 1.5
(3.335)

(K, Rb)Br 2.2+ 0.6 3.021 3.:00.4 2.705+ 0.035 2.0
(K, Rb)I 1.7+ 0.0 2.517 2.5 05 2.375+ 0.018 1.7
NH(Cl, Br) 42407 3.688 3.5 0.5 - -
Rb(Cl, Br) 3.1+ 0.4 2.690 2.8 0.7 2.915+ 0.075 2.0
Cs(Cl, Br) 3.5:0.3 4.340 4307 - -

@ Experimental data, system KCI-RbCL®| ref!®; KBr—RbBr-H,0, refl® KI-Rbl-H,0, refl’;
NH,CI-NH,Br-H,0, ref!® RbCI-RbBr-HO, ref!® CsCI-CsBr-HO, ref?°. The data results are
summarized in ref. ® Calculated according to EqL?) and experimental ddfa?°(data from ref®in
parenthesesy. Calculated according to Eql)(and presented in réf.% From fits to Lippmann diag-
rams? (for the mixed crystals (K, Rb)l, calculated according to equaﬁﬁﬁ;) = Hf(s) 1 =TITy),
WhereHE(s) = 2.685+ 20, Ty = 2 590).° Generalized parameters of Sangster and P&lton
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Relatively larger are the differences between the values obtained in this papt
those obtained from fits to the Lippmann diagrédmSince we used binary paramete
which are very close to those used by KoénigshéPgard ternary interactions in the
solutions were neglecte®,(y = Wunx = 0) in both papers, it is reasonable to assu
that the deviations are largely due to the different solubility data employed in the
culations. In the present paper, the data were taken from papers in which not ot
compositions of the liquid and solid phases but also the thermodynamic characte
of the mixing process are given?® However, in order to check the prediction, v
simulated thermodynamically the KCI-RbClI system and determined the compo
tion of the hypothetic eutectic point (Table V) and @#gs) value (Table V) using the
solubility data obtained by D’Ans and BusEhwhich have also been utilized by K¢
nigsbergel’. The results are in a very good agreement (Rigarad Table V).

This work was supported by the Bulgarian Ministry of Science and Education, Project X-594.
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